Analyzing Rich-Club Behavior
in Open Source Projects

Mattia Gasparini
Politecnico di Milano
Milano, Italy
mattia.gasparini@polimi.it

Marco Brambilla
Politecnico di Milano
Milano, Italy
marco.brambilla@polimi.it

ABSTRACT

The network of collaborations in an open source project
can reveal relevant emergent properties that influence its
prospects of success. In this work, we analyze open source
projects to determine whether they exhibit a rich-club be-
havior, i.e., a phenomenon where contributors with a high
number of collaborations (i.e., strongly connected within the
collaboration network) are likely to cooperate with other
well-connected individuals. The presence or absence of a
rich-club has an impact on the sustainability and robustness
of the project.

For this analysis, we build and study a dataset with the
100 most popular projects in GitHub, exploiting connectivity
patterns in the graph structure of collaborations that arise
from commits, issues and pull requests. Results show that
rich-club behavior is present in all the projects, but only
few of them have an evident club structure. We compute
coefficients both for single source graphs and the overall
interaction graph, showing that rich-club behavior varies
across different layers of software development. We provide
possible explanations of our results, as well as implications
for further analysis.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
OpenSym’19, August 20-22, 2019, Skovde, Sweden

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6319-8/19/08...$15.00
https://doi.org/10.1145/3306446.3340825

Javier Luis Canovas Izquierdo
Robert Clariso
Universitat Oberta de Catalunya
Barcelona, Spain
{jcanovasi,rclariso}@uoc.edu

Jordi Cabot
ICREA - UOC
Barcelona, Spain
jordi.cabot@icrea.cat

CCS CONCEPTS

« Software and its engineering — Open source model;
Programming teams.

KEYWORDS

open source, network analysis, rich-club coefficient, GitHub

ACM Reference Format:

Mattia Gasparini, Javier Luis Canovas Izquierdo, Robert Clariso,
Marco Brambilla, and Jordi Cabot. 2019. Analyzing Rich-Club Be-
havior in Open Source Projects . In OpenSym’19: 15th International
Symposium on Open Collaboration, August 20-22, 2019, Skovde, Swe-
den. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3306446.3340825

1 INTRODUCTION

GitHub is the most popular service to develop and maintain
open source projects: it allows to create public Git repos-
itories, to modify the code through commits, to send pull
requests updating other users’ repository or to notify them
about issues in the code. Each user interacts with many other
users in the project development process and these interac-
tions define collaboration networks, that can be exploited to
describe software projects. Studying collaboration networks
helps in discovering properties that influence the success of
a project, possibly giving interesting insights. In particular,
we are interested at the mesoscopic level of analysis of net-
works. At this level the main target is to identify relevant
connectivity patterns, which may reveal emergent properties
that stem from the way in which the nodes in the network
interact.

It is in this context that the very well-known property
rich-club behavior [4] arises as an interesting structural
signature to study. This behaviour reflects the tendency of
well-connected nodes (i.e., hubs) to interact with other well-
connected nodes.

https://doi.org/10.1145/3306446.3340825
https://doi.org/10.1145/3306446.3340825
https://doi.org/10.1145/3306446.3340825

OpenSym’19, August 20-22, 2019, Skovde, Sweden

The rich-club behavior has been studied in many diverse
domains: scientific collaboration networks [10], migration
flows [15], brain connectivity tissue [14], air transporta-
tion [4] or the Internet topology [16]. And we believe that a
similar behaviour can occur in software development com-
munities too. More precisely, if we consider a network rep-
resenting collaborations between developers, a rich-club be-
haviour may apply when developers collaborate mostly with
the same fixed subset of other important colleagues, instead
of spreading the cooperation to each component of the team.

The availability of GitHub data through its public API [2]
and other services (GHArchive [1]) introduces the possibility
to study in detail how rich-club is mapped into open source
software development.

The aim of this paper is to analyze the interactions net-
works of the most popular software development projects
available on GitHub, in order to verify the presence of the
rich-club behaviour and its potential implications for open
source projects.

We build a data collection process to integrate the com-
mit data coming from Git and the activity data coming from
GitHub into a graph structure suitable for our purpose, which
considers users as nodes and collaborations on project’s ac-
tivities as edges. We then computed the rich-club coefficient
for three kind of networks: issues-based, pull-requests-based
and commits-based. We verify how the rich-club coefficient
changes when all the interactions are combined in a col-
laboration supergraph. Our results reveal that the rich-club
behavior is present in all the supergraphs, but only few of
them have an evident club structure. We compute coeffi-
cients also for single source graph, showing that rich-club
behavior varies across different layers of software develop-
ment. Moreover, we manually compare two projects with
very different rich-club behavior with respect to external
data of the projects as a further step of validation.

The paper is structured as follows: in Section 2 the state of
the art is presented; in Section 3 the rich-club coefficient is
described in detail; in Section 4 the methodology to build the
network and to compute the coefficients are shown, while
in Section 5 discussion about results follows; Section 6 and 7
briefly describe treats to validity and replicability package
provided and the paper concludes in Section 7 with possible
future works.

2 STATE OF THE ART

The presence or absence of a rich-club effect in open source
projects has not been studied in a systematic way and has
not been applied to a large dataset as the one that GitHub
can now provide.

The work [12] studies the phenomenon for a specific
project in SourceForge (the Azureus, now Vuze, bittorrent
client), but it only considers file-level information, ignoring

Gasparini et al.

the users collaborating on those files. Similarly, [5] also in-
cludes this phenomenon as part of its study of a single FLOSS
community.

GitHub has been studied only as a single global commu-
nity [9]. As part of this study the presence of a rich-club
effect is checked, but only across the whole GitHub social
network which brings little information to the impact of this
effect for individual or closely related projects.

Finally, [13] covers a number of open source communi-
ties but restricts the analysis to email exchanges among the
participants.

The access to GitHub data allows to extend these analysis
both considering new dynamics (issues and pull-requests
events) providing information rich enough to perform the
analysis at the single project level, providing new insights
about a behavior that has only been studied on the surface.

3 RICH-CLUB COEFFICIENT

The rich-club coefficient was firstly introduced in [16] as a
non-normalized metric dependent of a degree k!:

2E;
Ni(Ng = 1)

where Ny is the number of nodes with degree greater or
equal to k and Ej are the number of edges between these
nodes.

Intuitively, #(k) measures how far the set of nodes with
degree k is from being a complete subgraph, i.e., a clique. The
value of ¢(k) ranges from 0 (all nodes are disconnected) to 1
(a clique), with higher values showing a stronger rich-club
behavior in the network.

However, this coefficient tends to increase as the network
grows [4], so a null model is needed to normalize the previous
formula. Normalization is given by:

__ ¢k)
p(k) - ¢rand0m(k)

where ¢(k) is computed using Equation 1 and ¢, ndom(k)
is the coefficient computed for the same k for a random
network with the same degree distribution as the original
model. This coefficient p(k) provides a non-negative number
where the value 1 is the baseline: if p(k) > 1, then the rich-
club behavior of the network is above that of a random case.

p(k) = (1)

(2)

4 RESEARCH METHOD

In this section we discuss how our study has been set up. We
first describe how we constructed the dataset for our study,
then how we built the graphs for the analysis and finally
how we calculated the rich-club coefficient.

!The degree of a node is the number of edges incident to that node.

Analyzing Rich-Club Behavior in Open Source Projects

Hrir- gy N~
01010 — € ool o]

Top 100 popular Top 100 popular
GitHub projects Git repositories

ht

—
L
Repositories
Database

GitHub
Archive

GitHub API

Curated B f(g{e_r_s_»_____)e Activities
Repositories S

—— e
(a) Database S Database

ol o
Generation Generation
(b) 13 A4 Eraradmts4 a2

Commit Graphs Issue Graphs PR Graphs
1 1 1

Collaboration a=e
C(Supergraph Generation.) —> rzsz.z

Collaboration

i i Supergraphs
(c)
Rich-Club Coefficient™) 5
Calculator 7
Report

Figure 1: Process followed for (a) the construction of the
dataset, (b) the graph generation and (c) the rich-club coeffi-
cient calculation.

Data collection

To collect a representative sample of open source projects,
we built a dataset comprising the 100 most popular projects
in GitHub?. In Github, users can star a project to show their
interest and follow its progress, thus we choose to measure
the popularity of a project in terms of its number of stars
(i.e., the more stars the more popular the project is).

The construction of the dataset involved three phases: (1)
cloning, (2) import and (3) enrichment. After these steps, we
applied a graph generation process to define the main source
to calculate the rich-club coefficient. Figure 1a illustrates the
construction process. Next we describe each step.

Cloning In the first phase, we obtained the list of the 100
most popular projects in GitHub (at the moment of collecting

Zhttps://github.com

OpenSym’19, August 20-22, 2019, Skovde, Sweden

the data® via its API*) and clone them to collect the corre-
sponding Git repositories.

Import To facilitate the query and exploration of the projects
we imported the Git repositories into a relational database
using Gitana [6]. In the Gitana database, Git repositories
are represented in terms of users (i.e., contributors with a
name and an email), files, commits (i.e., changes performed
in one or more files), references (i.e., branches and tags), and
file modifications (i.e., they link commits with files). For two
projects, the import process failed to complete due to missing
or corrupted information in the GitHub repository.

Enrichment Our study needs a clear identification of the
author of each commit so that we can properly link contrib-
utors and files they have modified (as commits are related to
files). Unfortunately, Git does not control contributors’ name
and email when pushing commits, thus resulting in plenty
of clashing and duplication problems in the data.

Clashing appears when two or more different contributors
have set the same value for their names (again, note that
in Git the contributor name is manually configured), thus
resulting in commits coming from different contributors ap-
pearing with the same commit name (e.g., this often happens
when using common names such as “Mike” or “John Smith”).
On the other hand, duplicity appears when a contributor has
indicated several emails, thus there are commits linked to
different emails suggesting different contributors while in
fact they come from the same person.

After evaluating the impact of this issue, we assessed that
on average around 60% of the commits in each project were
modified by contributors that involved a clashing/duplicity
problem (and affecting a similar ratio of files). Therefore, for
our analysis to be meaningful we needed a corrective action
to uniquely identify contributors.

To address this problem, we relied on available GitHub
data for the project, as GitHub uses unique usernames. By
linking commits to that unique username we could disam-
biguate the contributors behind the commits. Therefore, in
this phase we enriched our repository data with GitHub
usernames. We linked the commits with the GitHub user-
names via the commit SHA values to uncover the GitHub
usernames responsible for the commit with that SHA and
relying on that info instead on the info provided as part of
the Git commit metadata.

This method only failed for commits without a GitHub
username associated, which happened when the user that
made that commit was no longer existing in GitHub (e.g.,

3List obtained in September, 2016.
4Using the request: https://api.github.com/search/repositories?q=stars:> 1&
sort=stars&order=desc&per_page=100

https://github.com
https://api.github.com/search/repositories?q=stars:>1 &sort=stars&order=desc&per_page=100
https://api.github.com/search/repositories?q=stars:>1 &sort=stars&order=desc&per_page=100

OpenSym’19, August 20-22, 2019, Skovde, Sweden

Contributors

%. e o o
0 2000 4000 6000
Files
Di- e R
0 50000 100000
Commits
0 20000 40000 60000

Figure 2: Boxplots for the main dimensions of commits
dataset.

because s/he deleted the account). In these cases we stick to
the email in Git commit as contributor identifier.

Thanks to this method, we reduced considerably the both
clashing and duplicity problems in our dataset. The percent-
age of commits modified by contributors that may involve
either clashing or duplicity problems was reduced to 0.007%
on average (o = 0.039). We also calculated the percentage of
files affected by this problem: 0.025% (o = 0.089).

Additionally, for collecting data regarding activities on
GitHub, we followed a parallel pipeline. Given that GitHub
API rate limits do not allow to access in a reasonable time
all the data we needed, we decided to rely on the data from
GHArchive [1], a project which records every public event
triggered by GitHub since February 2011 and make the data
easily accessible for further analysis. We downloaded the
entire GHArchive database of 2016 and filter only the events
referred to the projects of our dataset, based on the unique
project identifier of GitHub. We therefore created a dataset
for the activity events relevant to our study: all the activities
that involve multiple users’ interaction are considered (i.e.,
issues, pull requests and relative comments).

At the end of this process, the curated repositories dataset
contains a total number of 98 projects, 50,697 contributors,
670,182 files and 926,204 commits. On average, each project
has 258 contributors, 6,839 files and 9,451 commits. Fig-
ure 2 shows the boxplots for each variable. On the other
hand, the activities dataset comprises 124,260 contributors
(118,919 interacting with issues, 20,140 interacting with pull
requests), 1,359,823 issues-related events and 280,807 pull-
request-related events. Figures 3 and 4 show the distributions
over the involved projects. Note that the activities dataset in-
cludes a higher number of contributors, as there are GitHub
users that can create issues, pull requests or comments and
may not contribute code (and therefore it is not tracked in
the Git repositories, i.e., the curated repositories dataset).

Gasparini et al.

Contributors
0 2000 4000 6000 8000
Events
%‘“ “ oo .
0 50000 100000 150000 200000 250000 300000

Figure 3: Boxplots for the main dimensions involved in the
issue data.

Contributors

#j:'i > colo—o b 5

0 200 400 600 800 1000 1200
Events

ﬂ S

0 20000 40000 60000 80000 100000 120000

Figure 4: Boxplots for the main dimensions involved in the
pull requests data.

Graph Generation

We rely on the so-called collaboration supergraphs to calcu-
late the rich-club coefficient in our study, which are obtained
from two set of graphs: (a) commit graphs using Git data
and (b) activity graphs using GitHub data. They are both
weighted, undirected graphs that include users based on dif-
ferent kind of interactions. We have defined three generation
steps to create these graphs, as illustrated in Figure 1b. Next
we describe the graphs generated in each step.

Commit Graph Generation Commit graphs are composed of
nodes, which represent contributors; and edges, which joins
two authors who have edited the same file in the repository.
Nodes are weighted according to the number of contributors,
while edge weight represents the number of files edited by
the two authors.

Activity Graph Generation Activity graphs are of two types:
issues-based and pull-request-based. In the first group, edges
connect contributors that interacted on the same issues, ei-
ther both commenting the issue or performing other actions
such as opening, closing and assigning the issue. Similarly,
pull-request graphs aggregate contributors that worked on
the same pull requests, commenting or reviewing others’
work. Even activities graph are weighted based on the num-
ber of common issues or pull requests each pair of users has
interacted with.

Collaboration Supergraph Generation The previous three
graphs (i.e., commit, issue and pull request graphs) are merged
together into a collaboration supergraph: each pair of
users has an edge if either they have committed the same file,

Analyzing Rich-Club Behavior in Open Source Projects

— polk)
5 Pkl

pelk)
— palk)

2 /\

0 g

05 10 15 20 25 30 35

Figure 5: KDE distribution of maximum values of p for the
types of graphs considered. The rich-club effect obtained in
the supergraph (blue line) is higher than the single graph
one, because the average values are further from 1. It is no-
ticeable that a quite strong behavior is present in the pull-
requests graphs, probably symptom that this critical step is
concentrated on few core developers.

or they worked on the same issue or pull request. Matching
of the nodes among the three source graphs is made via the
GitHub username, which uniquely identifies the contributor.
Note that this is possible thanks to having addressed the
duplicity and clashing problem in Git, as described before.

The three interactions graphs and the collaboration super-
graph are used as input to compute the rich-club coefficient,
as we explain in next section.

Computing the Rich-Club Coefficient

The coefficient is computed using the implementation® in
the NetworkX [7] Python package for network analysis, that
provides both the non-normalized and normalized version
of the coeflicient. Figure 1c illustrates this last step in our
method.

Note that the computation of the rich-club coefficient is
run for each project graph, but results are not always avail-
able: if the graph is too simple, the randomization process
used for normalization fails. We consider only the projects
with a defined normalized value for the supergraph, indi-
cated as pg(k), otherwise results could not be validated.For
this set of projects, rich-club coefficient is calculated as well
for the issues, commits and pull-requests graphs and it is
indicated as p;s(k), ppr(k) and pc(k), respectively.

Shttps://networkx.github.io/documentation/stable/reference/algorithms/
rich_club.html

OpenSym’19, August 20-22, 2019, Skovde, Sweden

5 DISCUSSION

Presence of rich-club behavior on the overall
contributions’ graph

A total of 60 projects have a defined pg value. The distribu-
tion of the maximum coefficient for each project is shown
in Figure 5. Focusing on the supergraph performance (blue
line), it is possible to notice that each project has a maximum
coefficient slightly higher than 1: the rich-club behavior is
present in all the inspected projects, but it has more rele-
vance only for a few of them, i.e. those that are in the right
tail of the distribution and so that are more distant from a
random network. In Table 1, the top-10 projects with respect
to pg are listed, as well as the maximum rich-club coefficient
for all the other source graphs. Intuitively, the higher the
coefficient the more prominent is the effect of the club on
the network, but quantitatively describing this effect is hard,
because the distribution of coefficients is not Gaussian and
confidence values cannot be directly applied.

We believe this diversity of results reflects the different
maturity of the projects and the alternative ways open source
projects can grow and evolve. For instance, many open-
source projects start as a collaboration effort from a small
team of developers. As the project grows and gains popu-
larity, it attracts new contributors. At this stage, in some
projects the original team retains “ownership” of the code-
base, with external developers submitting small contribu-
tions. Meanwhile, in other cases, the project matures and
is able to attract developers that become core contributors,
diluting the presence of the team of founders.

Other projects, typically high-profile ones, reach GitHub
already in a mature state, after the initial development is
performed privately, e.g. React, in a company or a closed
community. In this scenario, once it becomes public, the
project evolves rather than grows, and the role of a core team
of developers has a lower impact.

Therefore, the project history must be taken into account
when internally reacting to a rich-club measure. For instance,
let us focus on the two projects depicted in Figure 6, one
with a high value for the normalized rich-club coefficient
(materialize®, a CSS framework based on Material Design)
and another with a low value (swift’, the Swift program-
ming language). Regarding materialize, this project was
established in 2014 by a team of 4 developers, with 3,853
commits and 252 contributors. Nevertheless, the project only
has two top contributors (more than 1,000 commits), which
belong to the original team, and no frequent contributors
(between 100 and 1,000 commits). Thus, it is clear that this
project is still “owned” by its founders. On the other hand,

®https://materializecss.com
Thttps://swift.org/

https://networkx.github.io/documentation/stable/reference/algorithms/rich_club.html
https://networkx.github.io/documentation/stable/reference/algorithms/rich_club.html
https://materializecss.com
https://swift.org/

OpenSym’19, August 20-22, 2019, Skovde, Sweden

Gasparini et al.

Table 1: Top-10 projects with highest normalized rich-club coefficient p;. Coefficients of the other graphs are also presented

when available.

id name PG Pis Pe Ppr
23974149 Dogfalo/materialize 2.068966 1.500000 1.500000 1.605793
3100121 nwjs/nw.js 1.981061 1.092742 1.100000 —
557980 socketio/socket.io 1.836576 1.000000 1.052632 —
1200050 ariya/phantomjs 1.808190 1.250000 1.062500 1.639279
3228505 atom/atom 1.739953 1.000000 1.080000 1.524229
25315643 nylas/N1 1.705238 — 1.000000 —
12256376 driftyco/ionic 1.658773 1.076923 1.066667 1.379662
3402537 h5bp/Front_end_Developer_Interview_Questions 1.619048 — 1.000000 —
10270250 facebook/react 1.567072 1.000000 1.087719 1.526232

15204860 papers_we_love/papers_we_love

1.561404 1.000000 1.071429 1.545455

a === mandom

20 a 4 Dogfalo/materialize
rF
&

15

pik)
10

05

00

=== m@ndom
& Applefswift

Figure 6: Normalized rich-club coefficient for the materialize project (left) and the swift project (right). The presence of the
club is evident in the first project, given the high value of p; the latter is not showing the behavior.

swift started in 2010. It was publicly announced by Ap-
ple in 2014 and was later open sourced in December 2015.
Currently, the project has more than 84k commits and 674
contributors, with 14 top contributors (more than 1.000 com-
mits) and 44 frequent contributors (between 100 and 1.000
commits). Remarkably, 4 of the top contributors and 21 of
the frequent contributors do not belong to Apple according
to their GitHub profile. This is a sign that the project has
successfully attracted and retained external talent. As further
validation, the collaborations graphs used for comparison are
presented in Figures 7 and 8, respectively for materialize
and swift. The color represents the degree of each node:
rich-club effect is quite evident in the first graph, where the
2 core developers have the highest degree (in red), followed

by two clusters of well-connected users (in orange). On the
other graph, connections are more homogeneous and most
users are connected to each other, building a single wider
core cluster.

Rich-club behaviour on issues, pull and commit
graphs

Computing single graphs’ coefficients has the objective of
revealing possible clubs inside a particular dimension of the
project collaboration. In Figure 5, maximum coefficients dis-
tribution for issues (orange), pull request (red) and commits
(green) graphs are presented too: mean of distribution is near
to 1 for issues and commits, while it has higher values for pull
requests. It is important to notice that the tail of distribution

Analyzing Rich-Club Behavior in Open Source Projects

Figure 7: Interactions graph for materialize project. The
color of the edges is proportional to the correspondent node
degree: the club is formed by two main users and two well-
connected subgroups.

is not zero for both commits and pull requests, indicating
that for some projects the club effect is more relevant in the
single interaction network with respect to the supergraph.

A possible explanation to the strong difference between
pull requests coefficients and the others comes from the fact
that pull requests are critical activities in the development
process and the most time-consuming one (it is much easier
for an occasional contributor to open an issue than preparing
a pull request submission). This reduces the potential number
of people that could appear as node in this graph. Moreover,
given the criticality of this task, it is also usual that projects
keep a more tight control here to ensure the "consistent"
evolution of the project.

As for the clubs dimension (i.e. the number of nodes that
are part of the club, defined as the set of users with a degree
higher or equal to ky,4x, where k;;,x corresponds to maxi-
mum value of p(k)) for each graph: one remarkable point is
that 25 over 60 projects have a set of common users across
all their clubs, which means that a core set of users is inci-
dent to all the steps of the software development and form
what we could even call a superclub since they have influ-
ence on all community levels of the project. In this sense,
this superclub could be regarded as more relevant than the
club of the supergraph, which are the users that dominate
the supergraph but may not have such a dominant impact
on specific graphs if they are not part of the sueprclub as
well. Distribution of the overlapping users for each project
is presented in Figure 9.

OpenSym’19, August 20-22, 2019, Skovde, Sweden

Figure 8: Interactions graph for swift project. Most of the
users are connected to each other, giving the idea of a wider
collaboration across all the developers involved.

-
o

=
=

#users common to all clubs

overlap

Figure 9: Distribution of common users across all the clubs
of the project.

Rich-club implications at the individual project level

We have assessed the presence of rich-clubs inside some
projects among the most popular on GitHub.

In the literature, presence of rich-club behaviour has shown
both positive and negative effects on the network. On the
one hand, the rich club is thought to be critical for global
communication given that these nodes have high between-
ness centrality, in that, if the shortest paths between all pairs

OpenSym’19, August 20-22, 2019, Skovde, Sweden

of nodes is found, many of these shortest paths involve rich
club members [3]. On the other hand, the presence of this
behavior relates with the tendency of the most active com-
munity members to control the network.

Therefore, project owners should evaluate their rich-club
coefficient, understand where its coming from (e.g. see some
of the potential interpretations pointed above) and then re-
act in consequence. If there is a low rich-club, they should
make sure that the project information still flows across all
nodes even if the hubs are not connected and therefore do
not play this central role. If there is a high rich-club, gover-
nance policies [8] should be put in place to guarantee that
all important decisions require a broad community partici-
pation and cannot be just dominated by the few hub nodes
colluding together.

6 THREATS TO VALIDITY

Our work is subjected to a number of threats to validity
which we classify into: (1) internal validity, which is related to
the inferences made based on the application of our research
methodology; and (2) external validity, which discusses the
generalization of our findings.

Regarding the internal validity, our dataset construction
process relied on the GitHub repository information, which
failed to retrieve two of the initial top 100 repositories due
to missing or corrupted information in the repository. More-
over, all GitHub projects revealed a high ratio of clashing
and duplicity problems, which leads to collaboration graphs
that may have duplicated nodes (i.e., two nodes which actu-
ally represent the same contributor). We took measures to
alleviate and correct these issues.

As for the external validity, note that our sample is based
on the 100 most popular projects in GitHub and therefore our
results should not be generalized to other software develop-
ment platforms or to projects hosted in private repositories.

7 REPLICABILITY PACKAGE

To facilitate the replication of our study, we have prepared
a complete replication repository for interested researchers.
The repository includes the list of all considered projects
and their corresponding prepared graph files to calculate the
rich-club coefficient. More specifically, each source graph (is-
sues, pull-requests and commits) is already provided, while
the supergraph can be computed using the correspondent
script. A second script is used to calculate the rich-club co-
efficient for each type of graph. Results are stored in JSON
format. Notice that the computation of coefficients is time
and resource consuming for many graphs. The package is
available at this link®.

8https://drive.google.com/open?id=1P25fQITYMERXGAhLMyzkMGLuoPfKtpA3R

Gasparini et al.

8 CONCLUSIONS AND FURTHER WORK

We have presented the first systematic evaluation of the
rich-club behaviour on open source projects. We defined a
pipeline to collect data both from Git and Github and then
used this data to build three kind of graphs, representing
three different types of collaboration inside open-source soft-
ware development (commits, issues and pull requests), and a
global-view supergraph that combines all the previous. We
show that the rich-club behavior is present in all the super-
graphs, but only few of them have an evident club structure.
We compute coefficients both for single source graphs and
overall interaction graphs, showing that rich-club behav-
ior varies across different layers of software development.
Furthermore, we inspected two projects to validate our obser-
vations about the their club structure, showing that rich-club
behavior is a complex phenomenon that can provide plenty
of useful information but that must be studied in detail in
order to properly interpret its impact on specific projects.

Indeed, we believe this analysis opens a number of inter-
esting discussions and interpretations on the health of the
open source communities, useful also for project owners that
want to optimize the collaborations and contributions within
their project network.

As further work, we plan to go deeper in this rich-club
analysis by exploring as well weighted rich-club calcula-
tions [11] and the rich-club effect at, both, the module and
ecosystem level. The former would aim to detect “local” rich-
club behaviours that may be hidden when looking the project
from a global view but still be important for the success and
evolution of specific project components. The latter looks
for potential coordinated rich-clubs behaviours that span
multiple projects in the same domain.

Additionally, further sources of information (e.g., email ex-
changes in public project mailing lists) will be also considered
to enrich our graphs to check whether rich-club structures
do exist but manifest beyond the project data tracked by
GitHub.

ACKNOWLEDGMENTS

This work is partially funded by the H2020 ECSEL Joint
Undertaking Project “MegaM@Rt2: MegaModelling at Run-
time” (737494) and the Spanish Ministry of Economy and
Competitivity through the project “Open Data for All: an
API-based infrastructure for exploiting online data sources”
(TIN2016-75944-R).

REFERENCES

[1] [n.d.]. GH Archive. https://www.gharchive.org/

[2] [n.d.]. GitHub Rest API v3. https://developer.github.com/v3/

[3] Max A. Bertolero, B. T. Thomas Yeo, and Mark D’Esposito. 2017. The
diverse club. Nature communications 8, 1 (2017), 1277.

https://www.gharchive.org/
https://developer.github.com/v3/

Analyzing Rich-Club Behavior in Open Source Projects

[4] Vittoria Colizza, Alessandro Flammini, M. Angeles Serrano, and

Alessandro Vespignani. 2006. Detecting rich-club ordering in complex
networks. Nature Physics 2, 2 (2006), 110-115.

Guido Conaldi. 2010. Flat for the few, steep for the many: Structural
cohesion and Rich-Club effect as measures of hierarchy and control
in FLOSS communities. International Journal of Open Source Software
and Processes (IJOSSP) 2, 2 (2010), 14-28.

Valerio Cosentino, Javier Luis Canovas Izquierdo, and Jordi Cabot.
2018. Gitana: A software project inspector. Sci. Comput. Program. 153
(2018), 30-33.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Explor-
ing Network Structure, Dynamics, and Function using NetworkX. In
Proceedings of the 7th Python in Science Conference. 11 — 15.

Javier Luis Canovas Izquierdo and Jordi Cabot. 2015. Enabling the Def-
inition and Enforcement of Governance Rules in Open Source Systems.
In 37th IEEE/ACM International Conference on Software Engineering,
ICSE 2015, Volume 2. 505-514.

Antonio Lima, Luca Rossi, and Mirco Musolesi. 2014. Coding To-
gether at Scale: GitHub as a Collaborative Social Network. In Proceed-
ings of the 8th International Conference on Weblogs and Social Media,
(ICWSM’2014). The AAAI Press. http://www.aaai.org/ocs/index.php/
ICWSM/ICWSM14/paper/view/8112

OpenSym’19, August 20-22, 2019, Skovde, Sweden

[10] Julian J. McAuley, Luciano da Fontoura Costa, and Tibério S. Caetano.

(1]

[12]

[13]

[14]

[15]

[16]

2007. Rich-club phenomenon across complex network hierarchies.
Applied Physics Letters 91, 8 (2007), 084103.

Tore Opsahl, Vittoria Colizza, Pietro Panzarasa, and Jose J Ramasco.
2008. Prominence and control: the weighted rich-club effect. Physical
Review Letters 101, 16 (2008), 168702.

Weifeng Pan, Bing Li, Yutao Ma, and Jing Liu. 2011. Multi-granularity
evolution analysis of software using complex network theory. Journal
of Systems Science and Complexity 24, 6 (2011), 1068-1082.

Sergi Valverde and Ricard V. Solé. 2007. Self-organization versus
hierarchy in open-source social networks. Physical Review E 76, 4
(2007), 046118.

Martijn P. van den Heuvel and Olaf Sporns. 2011. Rich-Club Or-
ganization of the Human Connectome. journal of Neuroscience 31,
44 (2011), 15775-15786. https://doi.org/10.1523/JNEUROSCI.3539-11.
2011 arXiv:http://www.jneurosci.org/content/31/44/15775.full.pdf

Ye Wei, Wei Song, Chunliang Xiu, and Ziyu Zhao. 2018. The rich-club
phenomenon of China’s population flow network during the country’s
spring festival. Applied Geography 96 (2018), 77-85.

Shi Zhou and Raul] Mondragén. 2004. The rich-club phenomenon
in the Internet topology. IEEE Communications Letters 8, 3 (2004),
180-182.

http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8112
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8112
https://doi.org/10.1523/JNEUROSCI.3539-11.2011
https://doi.org/10.1523/JNEUROSCI.3539-11.2011
http://arxiv.org/abs/http://www.jneurosci.org/content/31/44/15775.full.pdf

	Abstract
	1 Introduction
	2 State of the art
	3 Rich-Club Coefficient
	4 Research Method
	Data collection
	Graph Generation
	Computing the Rich-Club Coefficient

	5 Discussion
	Presence of rich-club behavior on the overall contributions' graph
	Rich-club behaviour on issues, pull and commit graphs
	Rich-club implications at the individual project level

	6 Threats to validity
	7 Replicability Package
	8 Conclusions and Further Work
	Acknowledgments
	References

